集成电路设计是一项极为复杂且需要大量人力交互的工作,随着集成度不断提升,设计正确性、性能、功耗和面积目标的保证变得愈发困难,需要花费大量的设计时间和精力。然而,幸运的是,随着人工智能的发展,特别是大模型的应用,我们正处于一个设计革命的时代!AI在EDA领域的应用已经展现出巨大的潜力,涵盖了代码生成、仿真验证、逻辑综合、可测试性设计、布局布线以及流程控制等多个关键方面。我们对过去三年关键会议期刊的论文及引用延伸的论文进行了调研、总结与分类归纳,并整理了我们已发现的开源代码。由于笔者水平有限,难免在分类和描述上有疏漏和不足之处,恳请读者批评指正。
@article{CASTEST2024AIEDA,
title = {Summary of Artificial Intelligence and Electronic Design Automation},
author = {Jing Ye, Jianan Mu, Zhiteng Chao, Jiaping Tang, Mingjun Wang, Bin Sun, Rengang Zhang, Xinyu Zhang, Ge Yu, Tenghui Hua, Zexi Zhao, Leihan Zhang, Jutao Xiao},
year = {2024},
url = {http://www.castest.com.cn/AIEDA}
}
叶靖,穆嘉楠,晁志腾,汤家平,赵艺璇,王铭珺,孙彬,张仁刚,张鑫宇,余戈,华腾辉,赵泽熙,张镭瀚,肖举涛,李佳乐,戴沁銮
联系我们:
info@castest.com.cn
Auto flow control and parameter optimization
Auto generation of specification, code, or benchmark
Clock tree optimization
Design for test
FPGA synthesis, placement, and routing
Hardware security
High level synthesis
Lithography
Physical feature analysis and prediction
Placement
and routing
Power delivery network prediction
PPA prediction toward synthesis, placement, and routing
Reliability
Routability prediction
Standard cell library design optimization
Sub-resolution assist feature generation
Survey and others
Synthesis, gate sizing, technology mapping
Timing analysis and prediction
Verification, simulation, and debug
Yield learning
AI+EDA
开源代码
3D IC
Architecture or microarchitecture design optimization